SOLLOSSIMIX, uma área da Camargo Corrêa Cimentos nº 4 - Abr / Maio / Jun 2003 SOLLOSSIMIX SOLLOSSIMIX

Estrutura recuperada garante vibração da torcida

Reforma do Estádio Castelão (Fortaleza-CE) utiliza concreto de alto desempenho

- O Porto de Pecém (CE)
 avança para o mar e enfrenta
 a agressividade ambiental
 Página 4
- Em Salvador (BA), viaduto é entregue em apenas oito meses Página 6

E DITORIA L

Nesta edição da revista Soluções Silmix, apresentamos três obras está presente, garantindo a performance do concreto de alto de um estádio esportivo construído na década de 1970, a construção de um viaduto em tempo recorde, para aliviar o trânsito da área central de Salvador (BA), e um porto tipo off-shore, avançando para o mar do Ceará. São apenas três exemplos, mas que demonstram toda a diversidade de problemas que precisamos enfrentar a cada dia e, para os quais, a Camargo solução inovadora. São também continuam a ser feitos em nosso país. Com a marca Cauê, estamos sempre prontos para atender às demandas do mercado e ao lado de quem quer construir um Brasil melhor!

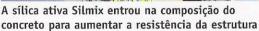
> Larissa Marini Bravo Coordenadora da Silmix

Soluções SILMIX - Publicação trimestral da área Silmix, da Camargo Corrêa Cimentos - Diretor Superintendente (interino): Carlos Roberto Ogeda. Diretor Comercial: Sérgio Bandeira. Comitê Editorial: Larissa Marini Bravo. Coordenação: Sunara Avamilano. Produção Editorial: Printec Comunicação. Editora Executiva: Vanessa Giacometti de Godoy. Editora: Dinaura Landini. Projeto e Produção Gráfica: Ricardo Branco. Revisão: Chris A. Binato. Fotolito e Impressão: Photon. Correspondência e Contatos: Av. Gonçalo Madeira, 600 - Jaguaré - São Paulo/SP - CEP: 05348-000. Tel.: (11) 0800-7039003 - Fax: (11) 33718-4270. e-mail: silmix@ccisa.com.br

É permitida a reprodução de textos desta publicação, desde que indicada a procedência e com autorização do editor.

CLIENTES

O novo Castelão


As tradicionais equipes de futebol do Ceará e do Fortaleza inauguraram o Estádio Governador Plácido Aderaldo Castelo, mais conhecido como *Castelão*, pelos torcedores cearenses, nordestinos e brasileiros, em geral, com um 0x0 em 1973. De lá para cá, o estádio foi palco de vários confrontos futebolísticos e até de uma missa histórica, conduzida pelo Papa João Paulo II, em 1980.

Um grande projeto de reforma e de recuperação, iniciado em 2001 e concluído no início deste ano, transformou o Castelão num dos estádios mais modernos do mundo. Sua capacidade foi reduzida de 120 mil para 60 mil lugares, todos em cadeiras com encosto e distribuídas pelos diferentes níveis. Camarotes, cabines climatizadas para rádio e tevê, elevadores, gramado com irrigação controlada por computador, sala para aquecimento dos atletas com piso de grama sintética – com essas características o novo Castelão atende a todas as exigências da FIFA.

À frente da obra de reforma do estádio, as empresas integrantes do consórcio Cinzel-ConcrEpoxi tiveram a preocupação de focar a recuperação e o reforço da estrutura. A sílica ativa Silmix foi especificada para o concreto na proporção de 1:10, com o objetivo de aumentar a resistência e a impermeabilidade do produto.

Para a Cinzel Engenharia, empresa com sede em Recife (PE) e que atua há 18

VANTAGENS SILMIX

■ A sílica ativa Silmix foi especificada para proporcionar ao concreto aumento de resistência e de impermeabilidade. Com isso, o produto torna-se mais resistente aos agentes externos, principalmente à salinidade da região.

Com suas modernas instalações, o Castelão atende às exigências da FIFA

anos na área de engenharia (obras civis, instalações industriais, estudos, projetos, planejamento e execução), essa foi a primeira vez em que a sílica ativa Silmix foi empregada no concreto. A empresa contou com a assessoria técnica do Laboratório de Materiais da Fundação Núcleo de Tecnologia Industrial do Ceará (Nutec).

O estádio foi construído em forma de uma falsa elipse, apoiado em 60 pórticos, com níveis para arquibancadas, camarotes, cadeiras e gerais. A cobertura possui estrutura metálica e o acesso é feito por duas entradas principais e quatro rampas.

Serviços contratados

- Recuperação e reforço nos níveis da geral, das cadeiras (faces inferior e superior) e das arquibancadas (faces inferior e superior)
- Recuperação e reforço das muralhas
- Recuperação dos porões das cadeiras e gerais
- Recuperação dos túneis e jardineiras
- Recuperação das juntas de dilatação bloqueadas das arquibancadas, gerais e cadeiras
- Recuperação do piso de circulação das cadeiras, arquibancadas, escadas de acesso e rampas de acesso;
- Recuperação dos dentes de gleber, com substituição dos aparelhos e apoio; reforço e atirantamento dos pórticos
- Recuperação dos pilares e das vigas dos pórticos
- Recuperação da marquise e do muro de contorno do estádio
- Serviços de calibração e ajuste da estrutura do estádio
- Proteção de todo o concreto com argamassa polimérica
- Fornecimento e montagem dos pórticos de sinalização externa em estrutura metálica
- Demolição das torres de iluminação em concreto

A utilização do Concreto de Alto Desempenho na construção do Porto do Pecém

Autores:

Eng.º Civil Afrodizio Durval Gondim Pamplona

Professor da Universidade Federal do Ceará - UFC e Diretor da Beton Tecnologia S/C Ltda. - afrodisi@uol.com.br

Eng.º Civil José Ramalho Torres

Professor do CEFET-CE e Eng.º da Fund. Núcleo de Tecnologia Industrial - jramalho@secrel.com.br

O Porto do Pecém faz parte do Complexo Industrial e Portuário do Pecém e está localizado cerca de 56 km a noroeste de Fortaleza (CE), na proximidade da ponta do Pecém. É um porto do tipo *off-shore*, estrutura que tem por objetivo minimizar eventuais efeitos sobre a linha do litoral. Nele foi utilizado um volume total de concreto da ordem de 50 mil m³.

O porto está inserido numa atmosfera marinha de alta agressividade: a temperatura média varia em torno de $28,9^{\circ}\text{C}$ e a umidade relativa do ar está sempre acima de 78%. Esses fatores são preponderantes para a aceleração de reações químicas, agravadas ainda pelos elevados teores de cloretos em suspensão (névoa salina), que são da ordem de 2.200~mg/m (dia), e pela forte ação de ventos, o que facilita a movimentação dos agentes agressivos. Por causa desses fatores, durante a elaboração do projeto, decidiu-se que seria empregado concreto de alto desempenho, com um f_{CK} de 50~MPa, uma vez que esse material apresenta características que combatem a ação das intempéries, proporcionando maior durabilidade, ou seja, maior vida útil à obra.

Convém salientar que esse foi o primeiro porto executado na

sua totalidade com concreto de alto desempenho no Brasil.

Foram estudados vários traços de concreto preparados com sílica ativa, para se obterem melhores características de durabilidade. A sílica ativa diminui a permeabilidade do concreto, aumenta a estanqueidade e melhora de maneira substancial as propriedades correlacionadas com a durabilidade. Atua também como uma "superpozolana", reduzindo a quantidade de hidróxido de cálcio, durante a hidratação do cimento. Em decorrência da redução dos vazios, minimiza também a penetração dos agentes agressivos, protegendo conseqüentemente as armaduras contra a corrosão. Essa melhoria permite projetar estruturas de concreto de boa durabilidade, mesmo sujeitas a agentes agressivos.

Ao se misturar o concreto, as minúsculas partículas distribuem-se nos espaços entre os grãos de cimento e em torno dos agregados. Assim, os produtos da hidratação distribuem-se mais uniformemente durante o endurecimento do concreto. Obtém-se como resultado uma melhora na estrutura microscópica interna, bem como na estrutura dos poros do concreto endurecido, ficando este mais resistente e durável.

A estrutura do porto de Pecém, do tipo off-shore, preserva a linha do litoral, mas recebe todo o impacto da salinidade

Os materiais empregados para o desenvolvimento deste concreto foram:

- Cimento Portland CP II F 32
- Sílica Ativa tipo não densificada
- Areia natural com Dmáx = 4,8 mm e Mf = 2,90
- Brita Gnais com Dmáx = 25 mm e Mf = 6,80
- Aditivos Superplastificante e plastificante

Dosagens estudadas

Os dados da proporção dos materiais e os resultados obtidos de resistência média e f_{Ckest}, para a idade de 28 dias, são mostrados nas tabelas abaixo.

MATERIAIS kg	Traço T1	Traço T2	Traço T3	Traço T4	Traço T5	Traço T6
Cimento	510	480	462	440	415	405
Sílica ativa	61	57,6	55	30,8	29,0	40,5
Areia	623	641	619	757	780	766
Brita	995	1002	1024	935	1010	998
Água	194	192	185	182	166	182
Plastificante	1,020	1,613	0,924	0,880	1,037	0,970
Superplastificante	7,649	8,712	6,930	7,480	5,395	7,351

Obs: No traço T6 foi empregado 300 g de fibra de nailon por m³ de concreto

TRAÇOS	Resistência Média (MPa)	f _{Ckest} (MPa)
510	74,1	70,3
480	67,0	65,7
440	58,6	56,5
415	56,8	53,8
462	63,7	56,7
405	62,5	60,5

Os resultados dos ensaios que serão apresentados a seguir são relativos ao traço com consumo de cimento de 405 kg/m³ de concreto. Esse foi o traço que deteve o maior volume de concreto empregado.

1. Resistência à tração por compressão diametral

Os ensaios de resistência à tração por compressão diametral foram realizados de acordo com a NBR 7222 da ABNT, empregando-se corpos de prova cilíndricos de $10~\rm cm \times 20~cm$.

IDADE (dias)	Resistência Média (MPa)
07	4,97
28	5,42

2. Teor de ar incorporado

A determinação do teor de ar incorporado foi realizada em conformidade com a NBR 11.686, obtendo-se valores médios de 0,9. %.

3. Penetração de água sob pressão

Esta determinação foi realizada de acordo com a NBR 10.787, utilizando-se corpos de prova prismáticos de 25 cm x 25 cm x 12,5 cm, obtendo-se valores médios de penetração da ordem de 5,0 mm, aos 28 dias de idade. O resultado indica tratar-se de concreto com baixa permeabilidade.

4. Resistência à penetração de cloretos

Os ensaios foram realizados em conformidade com a ASTM C 1202/94, obtendo-se o valor médio de 356 Coulomb, aos 28 dias de idade. Com relação à difusibilidade dos cloretos, a norma ASTM C 1202/94 classifica os concretos conforme o critério da tabela abaixo. Por este critério, a penetração dos íons cloretos é classificada como Muito Baixa. Assim, podemos considerar este concreto como de baixa permeabilidade.

Carga Passante (C)	Permeabilidade ao íon cloreto	
> 4.000	Alta	
2.000 - 4.000	Moderada	
1.000 - 2.000	Baixa	
100 - 1.000	Muito baixa	
< 100	Desprezível	

5. Módulo de deformação estático

Determinado de acordo com a NBR 8522, utilizando-se corpos de prova cilíndricos de 15 cm x 30 cm, obtendo-se valor médio aos 28 dias da ordem de 31,6 GPa. Foram utilizados extensômetros mecânicos externos aos corpos de prova.

Qualidade e rapidez

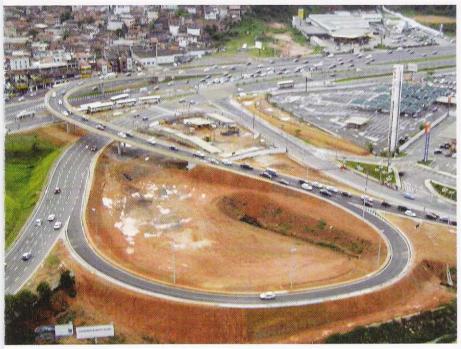
Em apenas oito meses, a Construtora Norberto Odebrecht S.A. concluiu e entregou para o tráfego o viaduto Nélson Dahia, com 220 metros de comprimento, etapa importante de um complexo de intervenções viárias, na região central de Salvador (BA).

Para que isso fosse possível, o projeto foi implementado com uma estrutura de concreto armado fck 40 MPa, providencialmente enriquecido com sílica ativa Silmix. A proposta era garantir a melhoria de aspectos, como: aumentar a resistência à compressão (concreto de alto desempenho); aumentar a durabilidade da estrutura por meio da impermeabilização; reduzir a possibilidade de fissuração no concreto de pouca idade.

Os resultados alcançados levaram também à antecipação dos prazos da desforma, reduzindo o tempo de execução da obra inicialmente previsto.

O viaduto é parte da ligação entre a avenida Luiz Viana Filho (Paralela) e a rua Marcos Freire. Sua estrutura passa sobre a pista de acesso ao viaduto Raul Seixas/avenida Bonocô, sobre a via exclusiva de transporte público e sobre a ligação Iguatemi/Paralela. Sua função no complexo é eliminar as interferências ou cruzamentos dessas vias, pelo fluxo dos veículos com destino à avenida Tancredo Neves.

A adição de 5% a 12% de sílica ativa Silmix, em relação ao peso do cimento, melhora as características do concreto, tanto no estado fresco como no endurecido, devido à ação pozolânica e ao efeito de micro filler. No caso do viaduto Nélson Dahia, foi especificada a adição de 7%, no total utilizado de 2.060 metros cúbicos.


A melhor performance do concreto com Silmix é analisada já na concretagem

Desforma: prazos foram antecipados e cronograma da obra foi reduzido

VANTAGENS SILMIX

 Aumento da resistência à compressão e da impermeabilização e, por consegüência, da durabilidade da estrutura. Menor possibilidade de fissuração no concreto de pouca idade.

O viaduto foi entregue em apenas oito meses, eliminando cruzamentos e aliviando o tráfego do complexo viário

Descrição da obra

Fundações

As fundações foram executadas com estacas metálicas, de perfis do tipo TR-68, simples e duplas, conforme determinado em projeto, e com profundidade necessária para atingir a resistência compatível com as cargas especificadas.

Blocos de coroamento das fundações

Os blocos foram feitos de concreto armado fck 30 MPa, confinado em fôrmas convencionais de madeira e sobre uma camada de concreto magro (fck 9 MPa), com 10 cm de espessura.

Mesoestrutura

Os pilares têm formato cilíndrico, com D=1,00 m. Execução: concreto

armado fck 40 MPa e fôrmas metálicas.

Superestrutura

O tabuleiro do viaduto é de concreto armado fck 40 MPa, apoiado sobre aparelhos metálicos. Os quatros vãos das extremidades foram protendidos, dois em uma extremidade e dois na outra, com aproximadamente 40 m cada.

Os dois vãos centrais foram executados com concreto armado fck 40 MPa convencional e apoiados nos pilares centrais e nos vãos das extremidades por meio de aparelhos metálicos.

Toda a estrutura foi concretada com a utilização de fôrma de madeira apoiada em cimbramento metálico tubular. Nas passagens sobre vias de tráfego foram utilizadas vigas em perfil metálico apoiadas sobre cimbramento metálico.

Complementações

Sobre a laje superior, foram executados guarda-rodas tipo newjersey de concreto armado, e nas laterais do viaduto foram instalados guarda-corpos metálicos.

Rampas de acesso e saída do viaduto

A rampa de acesso ao viaduto foi executada sobre aterro compactado, com contenções em bloco de concreto tipo TERRAE. A rampa de saída foi executada sobre aterro convencional com taludes.

Força total

à marca Cauê

Em todas as pesquisas, a Cauê é identificada como marca preferencial pelos consumidores. Simboliza qualidade, inovação e relacionamento. Por essa razão, a Cimentos está desenvolvendo um plano de ação com o objetivo de dar foco total à marca Cauê.

No centro da estratégia definida para este ano, está a implementação da nova logomarca. Foi desenvolvido um desenho mais homogêneo e simplificado, que aponta toda a força valorizada pelo mercado. Como um grande guarda-chuva, a marca Cauê vai abrigar as linhas de produtos fabricados e comercializados pela Cimentos: além do cimento cinza tradicional, o cimento branco, o concreto, as massas prontas e a própria Silmix.

TIPO ND - PESO LÍQUIDO 15Kg

O objetivo da empresa é consolidar a associação da marca Cauê a produtos inovadores e a uma estrutura ágil de servicos. Em breve, a nova logomarca estará presente também na sacaria da sílica ativa Silmix.

"Essa foi uma das necessidades apontadas pela pesquisa realizada no final do ano passado. Vamos aproveitar a força da marca Cauê e colocá-la no centro de toda a estratégia. A sílica ativa Silmix é um produto conhecido no mercado que estará agora mais próximo da marca Cauê", afirma Eveline Prado Janna-

relli, gerente de marketing da Cimentos.

A nova

de 15 Kg

A campanha institucional para 2003 vai sequir nessa mesma direção. Anúncios serão veiculados em revistas especializadas de circulação nacional como a Arquitetura & Construção, Téchne, AU, Casa Cláudia e outras. O enfoque das peças publicitárias será concentrado em aplicações e em soluções inovadoras.

Para consolidar o relacionamento com o mercado, a marca Cauê está patrocinando programas nas rádios CBN, de São

Eveline: Silmix agora mais próximo da embalagem marca Cauê

Paulo, e Itatiaia, de Minas Gerais. Na CBN, o escolhido é o Mais Você, que consta da programação vespertina e é especializado no debate de questões urbanísticas. Para a rádio Itatiaia, a proposta da Cimentos foi a produção de um programa

> voltado para ações e projetos na área de responsabili- . dade social, veiculado durante o jornal, um dos programas de maior audiência entre os mineiros.

Outra ferramenta de relacionamento com o mercado é o Clube Cauê. Usuários dos produtos Cauê como pedreiros, mestres-de-obras e

graniliteiros são cadastrados e recebem informações periódicas sobre ações da empresa voltadas especialmente para eles.

Construindo Parcerias

0800-7039003

Para solicitação de visita técnica e de informações, utilize a Central de Atendimento

visite nosso site: www.cimentocaue.com.br